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A derivation of the optical potential for elastic scattering of high-energy nucleons by heavy nuclei is given 
under the multiple-scattering and impulse approximations. The momenta of the target nucleons and the 
dependence of the nucleon-nucleon scattering matrix on the sum p and difference q (momentum transfer) of 
final and initial relative momenta in the two-body center-of-mass system are taken into account in this 
derivation, and their effects are emphasized. The momenta of the target nucleons and the p dependence of 
the nucleon-nucleon scattering matrix, which are usually neglected in such derivations, introduce nonlocal 
terms in the optical potential. The contributions to this optical potential which arise from the one-pion 
exchange and phenomenological parts of the nucleon-nucleon scattering matrix are discussed. When the 
optical potential is used to describe scattering in Born approximation, the nonlocal terms have the effect of 
energy-dependent multiplicative operators. In particular, target-momentum effects lead to terms which, 
in Born approximation, can be readily interpreted as energy-dependent distortions of the optical potential 
in the direction of the momentum of the incident nucleon. 

I. INTRODUCTION 

THE optical potential for elastic scattering of high-
energy nucleons by heavy nuclei has been derived 

by many authors in terms of the free nucleon-nucleon 
scattering matrix.1-3 These derivations have been based 
on the multiple-scattering and impulse approximations. 
In the multiple-scattering approximation, collisions 
which result in excited intermediate states of the target 
nucleus are neglected although all multiple collisions 
which leave the target nucleus in its ground state are 
taken into account.3 In the impulse approximation, 
formulated by Chew et al.4 it is assumed that a collision 
between the incident nucleon and a target nucleon is 
essentially a collision between two free nucleons, the 
momentum of the target nucleon being determined by 
the nucleon momentum distribution in the target 
nucleus; that is, the effects of nuclear binding are 
neglected except insofar as they determine the momen­
tum distribution of the target nucleons. 

In"addition to the multiple-scattering and impulse 
approximations, three other approximations are usually 
made in order to obtain a local optical potential whose 
terms are proportional to the coefficients of the nucleon-
nucleon scattering matrix for forward scattering.1-3 The 
derivation of this optical potential is sketched and the 
additional approximations are delineated in Sec. II to 
lay a foundation for the succeeding sections, in which 
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the optical potential is investigated under the multiple-
scattering and impulse approximations but without the 
additional approximations. These additional approxi­
mations involve the neglect of the momenta of the 
target nucleons in the matrix elements of the nucleon-
nucleon transition operator; the neglect of the depend­
ence of these matrix elements on the sum p of the final 
and initial relative momenta in^the two-nucleon 
center-of-mass system, which leads to a local optical 
potential; and, finally, the neglect of the dependence 
of these matrix elements on momentum transfer, which 
leads to an optical potential whose radial dependence 
is characterized by the nucleon density in the target 
nucleus.5 

The optical potential in momentum space is derived 
in Sec. I l l in terms of the form factor of the target 
nucleus and related functions, and in terms of the 
nucleon-nucleon scattering matrix in the two-body 
center-of-mass system and its derivatives with respect 
to the momentum sum p. In Sec. IV the optical poten­
tial in coordinate space is discussed. The contributions 
to the optical potential which arise fronTthe one-pion 
exchange and phenomenological nucleon-nucleon scat­
tering amplitudes are investigated with assumptions 
about the forms of these amplitudes for scattering off 
the energy shell. Results of this study are discussed in 
the final Sec. V* 

II. DERIVATION OF THE LOCAL OPTICAL POTENTIAL 

The optical potential in momentum space for elastic 
scattering of high-energy nucleons by heavy nuclei, 
derived on the basis of the multiple-scattering and im-

6 J. Dabrowski and J. Sawicki, Nucl. Phys. 13, 621 (1959) and 
J. Sawicki, ibid. 17, 89 (1960) have taken some account of target-
momentum and nonlocal effects in derivations of the optical 
potential. The optical potential in momentum space, from which 
they start, is equivalent to that given here in Eq. (1), but has a, 
somewhat different form because their derivations make explicit 
use of correlations in the ground-state wave function of the target 
nucleus. 
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pulse approximations, can be expressed as5-6 

(K' |F|K)=W(27r)^)/ ,go t(Ka ' ,Sa ,T«) 

Xexp - i L Ka'-r« 

X<i (2K' -K-K0 | i | i (K-K0> 

X e x p [ - i ( K ' - K) •* i;fco(K,,S,,T,) 

X e x p f i E K ^ r J n J W V r , (1) 

in terms of matrix elements of the transition operator t7 

which describe nucleon-nucleon scattering in the two-
body center-of-mass system.2'3 The superscript bar on t 
indicates an average over the spin and isotopic-spin 
states of the target nucleons. The K and Kp are initial 
momenta of the incident and target nucleons in the 
coordinate system in which the target nucleus is at rest 
(laboratory system), K' and K</ being the correspond­
ing final momenta. The function 

Under approximation Cfci, the optical potential in 
momentum space (1) becomes 

Xexpl - iEVr / ln** (2) 
0-1 J 0-1 

is the iV-dimensional Fourier transform of the anti-
symmetrized ground-state wave function $o, the 
variables (r^S^T^) representing the space, spin and 
isotopic-spin coordinates of the target nucleons. The 
momentum-space representation (1) of the optical 
potential is convenient because it exhibits a separation 
between the two-body scattering and target-nucleus 
aspects of the potential. 

The usual form of the local optical potential in 
coordinate space can be derived from (1) with the use 
of three additional approximations.1-3 The first approxi­
mation ($i consists of neglecting the initial momentum 
Ki of a target nucleon in the matrix elements of the 
two-body transition operator; that is, 

( | ( 2 K ' - K - K 1 ) | i | K K - K 1 ) ) - > ( K 2 K ' - K ) | i | | K ) . 
eti 

(3) 
6 The use of the number of target nucleons N as a factor in 

Eq. (1) is an approximation which is correct to relative order 1/N. 
In Ref. 3, Kerman et al. derived an optical-potential expression 
corresponding to (1) in which the factor N is replaced by (N— 1). 
This optical-potential expression is correct for any N. The 
scattering amplitude to which it leads, however, must be multi­
plied by N/{N— 1) in order to give the correct multiple-scattering 
and impulse approximation to the nucleon-nucleus scattering 
amplitude, as was pointed out in Ref. 2 and 3. Equation (1) will, 
therefore, lead to the correct scattering amplitude in Born 
approximation and to an amplitude correct in general to relative 
order 1/2V, within the limitations imposed by the use of the 
multiple-scattering and impulse approximations. 

where 

and 

(K'|F|K)ai=iV(k'|i|k)F(q), 

k= |K 

k'=§(2K'-K), 

(4) 

(5a) 

(5b) 

are (nonrelativistically) the initial and final relative 
momenta in the two-body center-of-mass system when 
the target nucleon is initially at rest in the laboratory, 
and 

q = K ' - K = k ' - k (6) 

is the momentum transfer. The function 

F(q)= / p(ri) expC-iq.ri)*! (7) 

is the nuclear form factor, and 

• / * • • 
P(r0 = / *ot(ra,S„,Ta)0o(ra,Sa,Ta) I I dt« (8) 

J «=»2 

is the nucleon density function (normalized to unity) 
of the target nucleus. The utility of approximation &i is 
that it leads to the form (4) in which the nuclear form 
factor and the nucleon-nucleon scattering matrix 

M ( k , k 0 = ~ ( w / 4 ^ 2 ) ( k ^ | k ) , (9) 

averaged over the spin and isotopic-spin states of the 
target nucleons, appear as factors; and these factors 
in (4) can be determined experimentally. In (9) m is 
the mass of a nucleon. 

The optical potential in coordinate space correspond­
ing to (4) is, with Eq. (9), 

<r| F|r,)a1=-(2^2iV/(27r)5m) 

X /"exppp-(r-rO]fl"(k,kOF(q) 

Xexp(iq«rOdpd!q, (10) 
where 

p=k'+k. (ID 
In order to obtain a local potential from (10), another 
approximation a2 is made in which the dependence of 
M(k,k') on p is neglected; that is, 

M(k,k')->M^(q). 
0,2 

(12) 

In (12) M(k,k') is taken to be a function of momentum 
transfer only, the total energy E=ft2k2/m in the two-
body center-of-mass system being considered to be a 
constant parameter. It should be noted that Eq. (3), 
which characterizes approximation di, follows from the 
assumption in approximation Ct2 that the scattering 
matrix is a function of momentum transfer only. On 
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the other hand, approximation <$i does not imply 
approximation d2. With (12), the p integration in (10) 
leads to a delta function of (r'—r) so that the energy-
dependent local optical potential, 

Vala2(r) = -(2¥N/(2w)2m) 

X fME(q)F(q) exp(*q.r)<*q, (13) 

follows from the general expression 

- / 
F(r)^(r)= (t\V\r')t(t'W. (14) 

It should be noted that the integration in (13) is over all 
values of q so that ME (q) will be carried off the energy 
shell; that is, to values q>2(mE)1/2/ft. If values of 
q>2{mE)lt2/fo make an appreciable contribution to 
(13), then Af^(q) must be continued into this off-
energy-shell region, whereas phenomenological on-
energy-shell values of Afj?(q) can be used for 
q^2(mE)1/2/h.7 

The averaged scattering matrix which appears in 
Eqs. (10) and (13) is of the form (to order l/N) 

M=A+Cv'ii, (15) 

where <r is the Pauli spin operator of the incident 
nucleon, and $ = p x q / | p * q | is the unit normal to the 
scattering plane. The form of (15) results from averag­
ing the scattering matrix over the spin states of the 
target nucleons; the superscript bars on A and C 
indicate averages over the isotopic-spin states of the 
target nucleons.8 With (15) and the assumption that 
the target nucleon distribution p(r) is spherically 
symmetric, Eq. (13) leads to an optical potential of 
the form1-3 

V(t)=Vc(r)+r-ltdV8o(r)/dr'},*L, (16a) 
with 

Vc(r)==-(2¥N/(2wym) 

and9 

: / 
X [AE(qftF(q) exp(iq-T)dq (16b) 

VSo(r) = (2ihW/(2wym) 

-f X / tCE{q)/1 P x q| lF(q) exp(iq-r)^q. (16c) 

A third approximation a3 is frequently made in which 
7 R. E. Schenter and B. W. Downs, Phys. Rev. 129, 2292 (1963). 
8 The general form of the nucleon-nucleqn scattering matrix 

and expressions for the average coefficients A and C are given in 
many places; see, for example, Ref. 7 and other references cited 
there. 

9 Equation (16c) appears in Ref. 7 as Eq. (7b) in which the 
factor (k2 sin0)-1 should be replaced by (2k2 sing)"1. The over-all 
factor (N—i), discussed in footnote 6, was used in Ref. 7. 

the scattering-matrix factors which appear in square 
brackets in (16b) and (16c) are evaluated at g=0 and 
pulled out of the integrals; that is, 

A*(?) -»I*(0) , (17a) 

^ ( g ) / | p x q | - ^ [ C ^ ( g ) / | p x q | ] ^ 0 . (17b) 
a3 

With (17), the integrals in Eqs. (16b, c) are proportional 
to the nucleon density in the target nucleus [see 
Eq. (7)].1"3 The justifications which have been given 
for the use of approximation CX3 are that high-energy 
elastic scattering, which takes place primarily in the 
forward direction,10 is the result of multiple two-body 
scatters in the forward direction; and also that, for a 
heavy target nucleus, the form factor F(q) is a rapidly 
varying function of q peaked in the neighborhood of 
q—Q so that only small values of q make appreciable 
contributions to the integrals in Eqs. (16 b,c).3 With 
Eqs. (16) and (17), the optical potential (13) becomes 

Faie»o,(r)= - {^h2N/m){AE{0)p(r) 
- [£*(«)/1P x q I ]«-o(lA) (dp(r)/dr)<r* 1}. (18) 

III. THE OPTICAL POTENTIAL IN MOMENTUM SPACE 

In order to take account of the momenta of the target 
nucleons in a derivation of the optical potential, we 
express the matrix elements of the nucleon-nucleon 
transition operator, which appear in Eq. (1), in terms 
of the matrix elements (k'l^k) which replace them 
under approximation Ofci. When the former matrix 
elements are expressed in terms of the momenta k and 
k' defined in (5), they can be written 

<k'-JK1|i|k-JK1> 

7-exppKrMr ' - r ) ] 

Xexp(-ik , .r ,)(r , | l |r)exp(*.r)rfr ,ir 

= exp(-K1.VP)<k'|«|k> (19 

with the help of the relation 

k . r - k / . r / = - p - l ( r ' - r ) - q - i ( r / + r ) , (20) 

which follows from (6) and (11), and the operator 
relation 

exp(iKi«x) exp(—ip*x) 
= e x p ( - K r V P ) exp(-ip-x). (21) 

Equation (19) illustrates the connection between 
approximations Cti and (£2 mentioned following Eq. 
(12). If the matrix element {k'|£|k) is independent 
of p, the operator exp(—KrVP) can be replaced by 
unity; Eq. (19) then embodies both approximations 
(Ji and (£2. On the other hand, if the momentum Ki of 

10 H. A. Bethe, Ann. Phys. (N. Y.) 3, 190 (1958). 
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a target nucleon is set equal to zero, Eq. (19) embodies 
0,1, but not necessarily ($2. 

When (19) is inserted into Eq. (1), a transformation 
similar to that given in (21) can be made to replace 
exp(— KrVp) by exp(iVn#Vp). After this replace­
ment and after the integrations over k</ and k^ have 
been carried out, Eq. (1) becomes, with Eq. (9), 

<K'| V\K>= -(frh*N/m) /*o+(r*,Sa,Ta) 

Xexp(—iq«ri) exp(iVn-VP) 

X*o(r«,Sa ,T.)n*Ji?(k,kO, (22) 

where the operator (Vn* VP) is denned by 
(Vr1-V,)/(ri)f(p)=[Vr,/(ri)]-LVrf(p)]. (23) 

Under the multiple-scattering and impulse approxima­
tions, Eq. (22) is an exact formal expression for the 
optical potential in momentum space6 in terms of the 
elements of the nucleon-nucleon scattering matrix in 
the two-body center-of-mass system. 

Evaluation of (22) can be effected with an expansion 
of the exponential operator. The first three terms in 
this expansion lead to the following expression, in which 
terms of relative order 1/N have been omitted: 

(K ' |F |K) 
= - (4xrh2N/m){F(q)M+ F a ) (q) • V VM 

+![i?<2)(q)-/?(a.9)(q)]VP
2ii? 

-iC^(2)(q)-3i?(S ,9)(q)](32M/3^)+- • • } , (24) 

where pq is the component of p in the direction of q. 
The form factor F(q) is defined in Eq. (7), and 

/

N 

ô1" exp(-iq-ri)[Vn0o] I I dry, (25a) 
7=1 

r N 

^(2)(q)=- /0o texp(- iq . r 1 ) [Vr 1
20o]II*7, (25b) 

J 7=1 

^(fl.«)(q) = - / *o+ exp(-iq-ri) 

X [ a W d r i , q
8 ] I I & 7 ; (25c) 

7=1 

and ri,q is the component of ri in the direction of q. The 
functions F( )(q) given in (25), as well as other func­
tions which appear when the expansion (24) is extended, 
are related to the nuclear form factor F(q); for example, 

F ( i ) (q ) -F ( 1 ) *( -q )= -qF(q ) , (26a) 
and 

^(2)(q)-^(2)*(q) = g2F(q)-2q.F ( 1 )*(-q). (26b) 

These functions are also related to expectation values 

of the momentum of a target nucleon; for example, 

F(2)(q=0)=(K1
2). (27) 

The first two terms in (24) follow exactly from the first 
two terms in the expansion of (22), the first term giving 
the optical potential in momentum space under approxi­
mation Obi, as was mentioned following Eq. (21). The 
third and fourth terms in (24) arise from the third term 
in the expansion of (22). The latter also leads to terms 
involving functions similar to (25c) with mixed second 
derivatives of <£o with respect to ri,q and an orthogonal 
coordinate or with respect to two different coordinates, 
both orthogonal to ri,q. These mixed terms constitute 
additional contributions to (24) of order 1/N times 
those of (25b, c).11 

The optical potential in momentum space (24) is 
proportional to the nucleon-nucleus scattering ampli­
tude in Born approximation6 and can, in principle, be 
used directly to describe high-energy elastic scattering 
in this approximation. Equation (24) is formally rather 
simple. When applied to real scattering (on the nucleon-
nucleus energy shell), the first term is the product of 
two measureable quantities. In order to evaluate the 
two-body scattering parts of the remaining terms, 
however, the nucleon-nucleon scattering matrix must 
be specified off the energy shell even for nucleon-nucleus 
scattering on the energy shell. One possible simplifica­
tion might be mentioned at this point. If the nucleon-
nucleon scattering matrix depends upon p only through 
p2, the second term in (24) contributes only in relative 
order 1/N. This follows from the fact that VvM(p2) is 
in the direction of p and12 

F ( i ) (q )=-k / ? (q )+0( l / iV) , (28) 

while p«q=0 for scattering on the energy shell. 

IV. THE OPTICAL POTENTIAL IN COORDINATE SPACE 

The optical potential in coordinate space 

<r|T|r'}= (2TT)-6 fexpftp- ( r - r ' ) ] 

X<K'|7|K>exp(iq.r')<*pdq (29) 

can be obtained from the formal expression (22) for the 
optical potential in momentum space or from an 
expansion of (22) such as that given in (24). There is 
no advantage in using the latter because the relatively 
simple forms of the third and fourth terms in (24) were 

11 When the nuclear wave function <£0 is taken to be a Slater 
determinant of single-particle shell-model functions appropriate 
to LS coupling, contributions to these mixed terms arise only from 
states with magnetic quantum numbers ra^O which are not 
paired (that is, states with mi^O for which there are not corre­
sponding states with — mi). 

12 The function F(i>(q) contains additional terms which arise 
from shell-model states with unpaired magnetic quantum num­
bers; the remarks in footnote 11 apply here. 
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obtained by establishing q as a preferred axis; and (29) 
involves an integration over q. 

Each term in an expansion of (29) with (22) will 
involve the average nucleon-nucleon scattering matrix 
M or one of its derivatives. Recent analyses of nucleon-
nucleon scattering data have led to a specification of a 
semiphenomenological nucleon-nucleon scattering ma­
trix in which one-pion-exchange (OPE) effects are 
isolated.13,14 That is, the nucleon-nucleon scattering 
matrix is written 

M=MOI>E+M' , (30) 

where MOPE is calculated from pion field theory, and 
M1 is determined phenomenologically from the scatter­
ing data after OPE effects have been subtracted out.13'14 

Since the optical potential (29) is linear in M, it can 
be written 

( r l F l r ^ ^ l F o P E l O + ^ i r i r ' ) , (31) 

corresponding to the decomposition (30). We shall 
consider these two contributions to the optical potential 
separately. 

The OPE contribution to the nucleon-nucleon 
scattering matrix has been calculated by several authors 
for scattering on the energy shell in the center-of-mass 
system.15-17 This OPE scattering matrix does not 
contain the spin-orbit coefficient, C ^ s o the OPE 
scattering matrix, when averaged over spin and 
isotopic-spin states of the target nucleons, contains (to 
order 1/N) only the spin-independent coefficient A 
[seeEq. (IS)]: 

M O P E = - (g2/^hc)lftc/mk)l(l) 
XZ3±(NN-Np)/Njf/(f+v*)l. (32) 

In (32) the plus (minus) sign on the neutron-excess 
term refers to an incident proton (neutron); g is the 
usual pseudoscalar-pseudoscalar pion-nucleon coupling 
constant (g^/^irfic^ 14); /x"1 is the pion Compton wave­
length ; and E (k) is the total energy of a nucleon in the 
center-of-mass system. In the nonrelativistic limit, the 
functional form of the OPE scattering matrix for 
scattering off the energy shell is the same as that for 
scattering on the energy shell.18 We therefore take (32), 

13 P. Cziffra, M. H. MacGregor, M. J. Moravcsik, and H. P. 
Stapp, Phys. Rev. 114, 880 (1959). 

14 See M. H. MacGregor, M. J. Moravcsik, and H. P. Stapp, 
Ann. Rev. Nucl. Sci. 10, 291 (1960) for a review of recent analyses 
of nucleon-nucleon scattering data. 

» A. F. Grashin, Zh. Eksperim. i Teor. Fiz. 36, 1731 (1959) 
[translation: Soviet Phys.—JETP 9, 1223 (1959)]. 

" J . Dabrowski, Nucl. Phys. 37, 647 (1962). 
17 F. E. Bjorklund, B. A. Lippmann, and M. J. Moravcsik, 

Nucl. Phys. 29, 582 (1962). 
18 For scattering on the energy shell in the center-of-mass 

system, the relation between the matrix elements of i f OPE and 
the matrix elements of the OPE contribution SOPE to the nucleon-
nucleon S matrix is (b\SoPB\a) = [i-hc/irE(k)2^( )(b\Mom\a)> 
where the four-dimensional delta function expresses conservation 
of energy and momentum. We have assumed that the off-energy-
shell matrix elements of I f OPE can be obtained by equating the 
coefficient of 54( ) in (b\S0PE\a) to [iitc/TrE(k)l(b\Moim\a). 

with E(k) replaced by nic2, to be the general averaged 
scattering matrix for use in the present calculations of 
the optical potential. 

The averaged OPE scattering matrix, which we have 
assumed, is a function of p alone; the q integration 
in (29) can therefore be done at once in terms of (22). 
The first two terms in the expansion of the resulting 
expression are 

<r|70PE|r'> 

= (-¥NaNR/2w2m)L(r) /"exppp- ( r - r ' ) ] 

X[^2/(^+M2)]^P+^(i)(rO- /"exppp- ( r - r ' ) ] 

XVP[i>2/(^+/x2)]^p+--4, (33) 

where aNR is the nonrelativistic limit of the coefficient 
of [^2/(^2+M2)] in (32). The target nucleon density 
p(r') was defined in Eq. (8), and 

*0d) (*') = * / ^ ( r ' , ^ , - • .,r^,Sa,T«; 

X V r + ( r ' , r v -,r^S«,Ta) JJdra (34) 

is the Fourier transform of the "form factor" F(i)(q) 
given in (25a). With (28), the "density" function in (34) 
can be written 

£>U)(r')=!Vp(r')+O(l/i\0. (35) 

The additional terms in the expansion (33) will contain 
"density" functions with higher derivatives of 0O than 
that in (34), coupled to higher derivatives of MOPE with 
respect to p. 

After the integrals in (33) have been evaluated, the 
resulting OPE optical potential in coordinate space 
leads, through Eq. (14), to 

7opB(r)iKr) 

= (-¥NaNR/2^m)\ (2irYp(x)^(x) 

- 2 7 r v / , [ e x p ( - i u | r ' - r | ) / | r ^ r | ] p ( r 0 ^ ( r 0 ^ 

+ 2 7 r V y , [ e x p ( - M | r ^ r | ) / | r ^ r | ] 

X(r ' - r ) . 9 a )(rO^(r 'Mr '+- , (36) 

in which only the first term is local. An indication of the 
effect of the nonlocal terms can be obtained by con-

This leads to an off-energy-shell MOPE which differs in form from 
the on-energy-shell MOPE by the addition of terms of relative 
order (hck/mc2)2. 
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sidering the contribution of these terms to scattering 
in Born approximation. In this approximation, the 
radial part of the wave function is replaced by 
exp(iK«r), where K is the momentum of the incident 
nucleon in the laboratory. When this replacement is 
made in the nonlocal terms in (36), the corresponding 
optical potential becomes an energy-dependent multi­
plicative operator. If, in addition, p(r') and P(i)(r') are 
expanded in Taylor's series about r ' = r and use is made 
of Eq. (35), the leading terms in the OPE optical 
potential for scattering in Born approximation are 
(to order 1/N) 

[FoPE(r)]BA= (-4:Trh2NaNR/m) 

X{p(r)[l-MV(#2+M2)] 
- iVrp( r ) -V/(^ 2 +M 2 ) 2 } . (37) 

It is interesting to note that (in this approximation) the 
terms involving second derivatives of the nucleon 
density function p(r), which arise from the second and 
third terms in (36), cancel one another. The term in 
(37) which is proportional to the nucleon density is the 
entire nonrelativistic FOPEW which results from a 
calculation in which approximations di-Clz are 
used.16-17-19 

The phenomenological scattering matrix M' [see 
Eq. (30)]|will contribute coefficients A' and C tojthe 
averaged scattering matrix (IS) ;20 these coefficients will 
ultimately lead to central and spin-orbit parts of the 
optical potential [see Eqs. (16)]. With the phenomeno­
logical scattering matrix Mf, Eqs. (14) and (29) and 
the first two terms of Eq. (24) lead to 

F ,(r)^(r) = (-47r^iV/(2ir)6m) /"exp[ip- ( r - r ' ) ] 

X{F(q)M'+F (1)(q).VpM ,} 
Xexv(iq-r')\l/(r')dpdqdrf. (38) 

In order to evaluate (38), the dependence of M' on p 
and q must be specified. In practice, M' is determined 
as a function of energy and scattering angle (or energy 
and q2).20 This is just what is wanted to evaluate 
Eq. (38) in Born approximation, in which case (38) 
leads to 

[ F ' ( r ) ] B A = ( - « W / m ) 

x j f F ( q ) ( F [ ( K + q ) , q ] ) exp(tq.r)<Iq 

+ y,F(1)(q).[VpM,(p,q)]P=K-fq 

Xexp(tqT)(*qL (39) 

with K2=4mE/ft221 

19 It was pointed out in Ref. 16 that the FOPE calculated in 
Ref. 16 and 17 differ in sign. Equation (37) agrees with the optical 
potential derived in Ref. 16. 

20 See, for example, Ref. 3. 

In order to improve upon the Born-approximation 
result (39) and to indicate (formally at least) the non­
local nature of (38), we seek a reasonable expansion of 
M'(p,q) about its on-energy-shell value -M'[(K+q),q]. 
We, therefore, assume that M'(p,q) =M'(p2,q2) (as it 
is on the energy shell) and that the expansion 

#W)=#T(K+«i)a ,£] 
+ Zp2- (K+q)2XdM'(p2,q2)/dp2\=K+<l+ • • • (40) 

gives an adequate representation of Mf for scattering 
off the energy shell.21 Use of only the first term of (40) 
in (38) is equivalent to imposing approximation d2 

which, as we mentioned following Eq. (12), also in­
cludes the effect of approximation Ofci. On the other 
hand, if the first term in (40) with q—0 is used in (38), 
this is equivalent to invoking approximations Cfci-Cta It 
should be noted that the use of (40) (with any value of 
q) in (38) will lead to an energy-dependent optical 
potential V'(t) because the use of a particular value of 
K is implied. 

With the expansion (40) and the relation (28), the 
optical-potential expression (38) becomes (to order 
l/N) 

F'(r)^(r)= (-4irti2N/m) 

X{GB ( r ) -GB > ( 1 ) ( r ) [^+V 2 ] 
+VG B , ( 1 ) ( r ) - [2 iK-V] 

+V2GWr)+---W(r), (41) 
where 

G*(r)= (27r)-^F(q)Mt(K+q)2,g2] 

Xexp(iq*r)dq, (42a) 

and 

G^, (1 )(r)=(27r)-^F(q)[aM'(^^)/^2]p=K+q 

Xexp(iq.r)dq. (42b) 

The optical-potential expression (41) is clearly energy-
dependent; and it reduces to (39) in Born approxi­
mation. 

According to Eqs. (14) and (31), the optical-potential 
relation F(r)^(r) is given by the sum of (36) and (38), 
which contain a variety of nonlocal terms whose 
character has been indicated in Eqs. (37) and (41). If 
the momenta of the target nucleons are neglected under 
approximation Oh, only the first term in each of 
Eqs. (33) and (38) is retained; this eliminates some, 
but not all, of the nonlocal terms in the optical-potential 
expressions (36) and (41). If the p dependence of the 

21 Strictly speaking, the expansion (40) should be in terms of the 
two variables p2 and q2 about values consistent with the relation 
52+/>2=i?2, appropriate to scattering on the energy shell. In 
using (40) we are tacitly assuming that only values of q2^K2 

contribute to the q integration in (38), in accordance with the 
discussion following Eq. (17). 



B528 R. E. S C H E N T E R AND B. W. DOWNS 

nucleon-nucleon scattering matrix is neglected under 
approximation (£2, the optical potential is entirely local 
(with or without approximation &i) because, in this 
case, the p integration in Eq. (29) leads to a delta 
function of (r— r'). 

Approximation <5£3, in which the q dependence of the 
nucleon-nucleon scattering matrix is neglected, has 
nothing to do with the local-nonlocal nature of the 
optical potential; this q dependence merely determines 
the r dependence of the radial functions such as those 
given in (42). In a previous paper,7 we evaluated the 
high-energy optical potential (13)9 under approxima­
tions di and 6,2 but without invoking approximation 
(£3. In that work, a jphenomenological nucleon-nucleon 
scattering matrix M was used, in which the OPE 
contribution had not been isolated. That paper, there­
fore, contains an evaluation of the first term in Eq. (41) 
with Mr replaced by a wholly phenomenological M. 
The result is an energy-dependent local optical potential 
of the form (16a), in which the functions Vc(r) and 
Vso{r) are characterized by effective density functions 
which have larger mean radii and more diffuse surfaces 
than does the nucleon distribution of the target nucleus, 
which characterizes these functions under approxima­
tion (£3 [see Eq. (18)1. An extension of that work to 
include the evaluation of the radial function (42b) 
would lead to central and spin-orbit functions Vc,(i)(r) 
and Vso,(i)(r) similar to those just discussed, which 
correspond to the radial function (42a).22 

V. CONCLUDING REMARKS 

The optical-potential relations F(r)^(r), given in 
Eqs. (36) and (38), can be approximated by series 
expansions which involve derivatives of the wave 
function as well as multiplicative operators. The 
character of those terms in the optical-potential 
operator which lead to derivatives of the wave function 
has been indicated in Eq. (41) and in the Born-
approximation relation (37). 

The term of the form 

fK-Vp(r) (43a) 

in the Born approximation (37) to FOPEW has an 
interesting consequence: It corresponds to an energy-
dependent distortion of the optical potential in the 
direction of the momentum of the incident nucleon. 
This distortion will be primarily in the neighborhood 
of the periphery of the optical potential because the 

22 See also the reference to J. Sawicki in footnote 5. 

nucleon density in heavy nuclei changes appreciably 
only in the surface region.23 

The optical-potential relation (41) contains the 
operator VGE, (i) 60 • [2iK— V ] , similar to (43a), which 
reduces to 

tK.VG*,<u(r) (43b) 

in Born approximation. The radial function G#,(i)(r) 
can be expected to have a form similar to that of GE{*) 
[see Eqs. (42)]. This means GE, (i)(r) will contain 
central and spin-orbit terms of the form given in Eq. 
(18) with p(r) replaced by effective density functions 
such as those discussed at the end of Sec. IV. The term 
(43b), therefore, also has an interpretation as an 
energy-dependent distortion of the surface of the 
optical potential. 

The emphasis in this paper has been on the optical 
potential in coordinate space. The detail with which the 
development in Sec. IV was pursued can, of course, be 
extended to the optical potential in momentum space 
discussed in Sec. III. 

It should be recalled that several of the expressions 
given in this paper are valid only to relative order \/N 
for arbitrary heavy nuclei. This restriction has been 
pointed out where approximate formulas [such as (28) 
and (35)] have been used. The reason for reporting 
expressions whose validity is restricted in this manner 
is that these restricted expressions can be more readily 
interpreted than can the general expressions to which 
they correspond; moreover, the validity of the entire 
optical potential discussed here is similarly restricted 
by the use of Eq. (15) for the averaged nucleon-nucleon 
scattering matrix.24 

The validity of the development presented here 
depends upon the correctness of the forms taken for the 
constituents of the nucleon-nucleon scattering matrix 
for scattering off the energy shell. We have made what 
we consider to be reasonable assumptions about this 
aspect of the scattering matrix in order to indicate the 
qualitative features of the corresponding optical 
potential. 
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